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B O U N D A R Y  L A Y E R  FLOW OVER A FINITE FLAT PLATE 
WITH A CONSTANT SLIP VELOCITY 

Yong  Kweon Suh* and Taik Sik Lee** 

(Received november 23, 1987) 

Two-dimensional incompressible laminar flow induced by a constant slip velocity on the surface of a finite :flat plate is studied 
both analytically and numerically for large Reynolds numbers. It turned out that the thickness of the thin layer downstream of the 
trailing edge increases in square root of the distance from the trailing edge. Numerical integration of the boundary layer equations 
for the whole flow field confirmed two asymptotic natures of the flow field; near the trailing edge the analytic result is 
approached, and far downstream of the plate the jet flow solution is attained. 
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1. INTRODUCTION 

The problem considered in this paper stems from the need 
to investigate the structure of the steady streaming flow near 
the rear stagnation point of a bluff body under high- 
frequency-oscillations. For instance, when a circular cylinder 
submerged in a viscous fluid oscillates horizontally in a high 
frequency, the steady motion of the fluid is induced around 
the cylinder due to the nonlinear effect of the Navier-Stukes 
equations (Schlichting, 1955). The accompanying drift of tluid 
elements may have consequences of practical importance, 
such as transport of sediment (Batchelor, 1977) around the 
piles of offshore structures near the sea bottom (the wave 
instead of the cylinder then induces the steady flow motion, in 
this case). 

The problem is now to solve the flow field with slip veloc- 
ity on the cylinder surface, zero velocity in the far-field, and 
suitable conditions for symmetry. In this case when Re is 
large, where Re is Reynolds number based on the velocity of 
the streaming flow and the radius of the cylinder, there 
develop a boundary layer on the surface, thin but thicker lhan 
the Stokes layer, and a thin shear layer (jet flow) along the 
horizontal line extended from the rear stagnation point of the 
cylinder. The classical boundary layer theory can be applied 
for this case for the whole flow field except the small region 
near the rear stagnation point. 

Stuart (1966) presented the series solution for this problem, 
but he stated that the solution seemed unlikely to converge 
near that point. Duck and Smith (1979), in an attempt to find 
out the reason for the discrepancy between the theoretical 
and experimental results for the streaming problem, consid- 
ered the oscillating cylinder in a large tank. Their series 
solution was also insufficient to resolve the detailed flow field 
near that point. They showed a rigorous study concerning the 
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impact of the jet-like boundary layer in the earlier paper 
(Smith and Duck, 1977), and presented a conjectured flow 
pattern during the collision of the opposing jets. 

Difficulties associated with the analytic approach to this 
problem are; first, the slip velocity vanishes at the rear 
stagnation point resulting in the nonlinearity in the governing 
equations for the local flow field and the complexity in 
representing the velocity profile at the point, and second, the 
fluid elements turn sharply through the corner which may 
even cast doubt about the validity of the double deck struc- 
ture applied by Smith and Duck (1977). 

As a first step to resolve that problem, we simplify the 
geometry and the boundary conditions to avoid the above 
difficulties. First, the slip velocity is taken constant through- 
out the surface, and second, the cylinder is replaced by a flat 
plate with a finite length. Thus the problem now becomes to 
solve two-dimensional incompressible laminar flow induced 
by a constant slip velocity on the surface of a finite flat plate, 
where the plate is motionless. 

According to the general boundary layer theory, it is 
known that whenever the boundary layer meets an abrupt 
change in the boundary condition it responds to it through a 
thin layer near the surface of the body; see (Straford, 1954) 
and (Curle, 1981) for the change in the pressure gradient, 
(Goldstein, 1930) for the change in the surface condition, and 
(Suh, 1986) for a corner problem. Goldstein (1930) studied the 
uniform flow past a finite flat plate, and showed that the 
thickness of the thin layer developed downstream of the 
trailing edge increases like O(x~ ~3) and that the governing 
equation for this region is non-linear, where x~ is measured 
from the trailing edge along the streamwise direction. In his 
solution, however, the normal component of velocity becomes 
infinite at x~-(F. This singularity actually became the basis 
for the foundation of the triple deck theory (Smith, 1982). The 
lower deck, which corresponds to the thin region of O (xl '3) 
for small x~, is governed by the nonqinear equation. This 
non-linearity comes from the fact that the velocity on the 
surface is zero up to the trailing edge at which the streamwise 
velocity increases abruptly, and thus the convective terms of 
the boundary layer equations are bahmced by the diffusive 
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term and are no longer linearized. In the present problem, 
however, there exists a finite amount of velocity on the 
surface, and hence the governing equations are expected to be 
of linear form, since the solution of the leading order equation 
for the thin layer is conjectured to be the slip velocity itself as 
is also shown in this paper. Consequently the thickness of the 
thin layer may be different in power of x, from that of the 
Goldstein's problem. 

On the other hand, intitutively it is expected that the flow 
mechanism far downstream would resemble that of the well 
known jet flow problem (Schlichting, 1955). 

The purpose of this study is to investigate the boundary 
layer equations subject to a sudden change in a boundary 
condition in the restriction that the whole flow field is in- 
duced by the slip velocity on the surface. The numerical 
method is also used to support the analysis. Section 2 deals 
with the formulation of the problem and finds the similarity 
solution for the upstream region x~ >0. Section 3 is concerned 
with the analytic solution near the trailing edge, whereas 
section 4 is for the region far downstream. Section 5 shows 
the numerical solutions of the boundary layer equations for 
the whole region. 
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The coordinate system and the boundary conditions in 
dimensionless quantities 

asymptotically. Further, we stretch variables v and y as 

1 1 
v = ~ V ,  y = ~ Y  

upon which (1) and (2) become 

3u . 9 V  
~x-+ b ~ - = u  (3) 

. F O R M U L A T I O N  O F  T H E  
P R O B L E M  

8u 3u  _ 8 ~ u  (4) 
u~x-  + V a y  c~ya 

We consider two-dimensional laminar flow of an incom- 
pressible fluid at high Reynolds numbers over a flat plate 
with a finite length. The flow otherwise undisturbed is in- 
duced by a constant slip velocity (-7o on the plate occupying 
the space o<x*<_ l  as shown in Fig. 1. Then on the assump- 
tion that a boundary layer exists, the appropriate governing 
equations for determining a steady motion in the boundary 
layer are 

The boundary conditions are 

V=0  on Y = 0  for all x > 0  (5) 

u = l  on Y = O  for0<x<_ 1 (6) 

3u  1 - ~ -  0 on Y = 0  for ~ < x  (7) 

3u 3v + -~-- = 0 (1) 
c?x o3: 

3u 8 u _  dP ~ 1 3 2 
U 3 x +  ~" ay dx Re  Oy u (2) 

where x, >', u, v, and p are non-dimensional variables based 
on 2l, Uo, and p the density of the fluid. Re  is the Reynolds 

number defined as 2 Uol in which p is the kinematic viscos- 

ity. The reason for 2l instead of l lies only on the algebraic 

simplicity. The pressure gradient term ~x p in (2) can be 

1 
ignored to the unknown order of ~ - ,  because u-~o as y ~ c o  

u ~ 0  as y-+co (8) 

The third condition (7) is based on the fact that the flow field 
1 

for ~-< x be symmetric about Y =0. Fig. 2 shows the geome- 

try concerned and the boundary conditions in non- 
dimensional variables. 

We now introduce the similarity variable z as used in the 
classical boundary layer flow problem for the flat plate : 

Y 
z = ~ (9) 

Then we put 

u = f ' ( x ,  z )  (10) 

Vx �9 so that 

u z), (11) 

V -  3 ~  1 
3x - f f2x ( f  - z f ' )  - ~ f x  (12) 

Fig. 1 
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Definition of the problem in the physical coordinates 

where ~ = R er  is the stretched stream function from r and 

3 ~  _ 8r V = -  3 ~  8r (13) 
u 8 Y  3 y '  3 x '  v=  3x" 
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Prime denotes differentiat ion with respect to z and the 
subscript x to x. Substituting (10), (12) and their der ivat ives  
into (4), we obtain 

f "  + f f " = 2 x ( f ' f ' x -  f " f~)  

The  boundary conditions (5) to (8) then reduce to 

(14) 

f ( x ,  0 ) = 0  (15) 

< ~ ( 1 6 )  i f ( x ,  0 ) = 1  f o r 0 < x _  2 

1 f " ( x ,  0 ) = 0  for ~ < x  (17) 

f ' ( x ,  z ) -~0  as z-+co (18) 

If the plate were semi-infinite, the whole flow field would be 
represented by the s imilar i ty solution with one variable  z,  i. 
e., the terms on the right-hand side of (14) would vanish. The  
present case, however~ is for a finite plate, and thus it is clear  
that the s imilar i ty solution satisfying all the boundary condi- 
tions of (15) to (18) does not exist. Nevertheless,  we may 
assume that  the similari ty solution is an exac t  solution up to 

the trai l ing edge for (14) with (15), (16), and (18). The  reason 
is that, as far  as the governing equat ions are concerned, they 
are of parabolic  type and hence the upstream influence of the 
flow field due to the t ransi t ion in the boundary condition 
from (16) to (17) is impossible. A very similar situation arises 
for the Goldstein's problem (Goldstein, 1930) in which the 
Blasius solution applies to the region between the leading 
edge and the trai l ing edge of the finite flat plate (Van Dyke, 
1975). 

Thus, let f~(z )  be the similari ty solution of f ( x ,  z)  valid 
< 1  

for 0 < x - ~ ,  then 

3. ASYMPTOTIC SOLUTION N E A R  
THE TRAILING EDGE 

The  solution presented in the preceding section is valid 
1 . 

only up to x =  2 just downst ream of which the boundary 

condit ion changes abruptly from (16) to (17). A typical situa- 
tion can be found near  the trail ing of a finite fiat plate subject 
to a uniform flow. It is general ly noticed that  whenever  a 
sudden change takes  place in the boundary condit ion or in the 
pressure gradient  the boundary layer responds to it through a 
thin viscous layer. For  the flow downst ream of the trai l ing 
edge of a flat plate subject to a uniform flow, this thin layer 
turned out to grow like o(x~ *a) where x ~ = x -  1 is measured 
from the trai l ing edge(Goldstein, 1930). For  the present prob- 
lem the exponent  of xt for the thin layer thickness is 
ant icipated to be different from 1/3 because the veloci ty for 

Y - , o  remains O(1). We let this exponent  1 unknown a 
m 

priori. We put 

y 1 
~]=--~, ~ = ( m x J  ~ (26) 

and 

~;=~"-~F(~,  T~) (27) 

so that 

u = ~  ~ 2F'(~.  ~), (28) 

V =--  ~{ ( m - 1 )  F + $F~- vF'} (29) 

JT"+f~f;'=O, (19) 
f , (0)  =0,  (20) 
f '~(0)  = 1, (21) 
f ' , ( z ) ~ O  as z - , c o  (22) 

Solution of (19) satisfying (20) to (22) starts  f rom z ; 

f~ (z) = ~ bkz "~ (23) 
k = l  

b,:l, b~:a: S"~(0)_, 
- - 1  k 2 

b~ = k (k - 1) ( k -  2) ~ =~2 (k - i - 1) (k - i - 2) &b~-, ..... 

(k~3)  
where / l=-0 .31380768. . .  f rom the numerical  integration. 
The  following is then obtained : 

Substi tuting (28), (29) and their der ivat ives  into (4) we get  

F"  + ( m -  1) F F " -  (m-- 2) F ' F  '= e (F,F,  _ F" F~) 
(30) 

The  leading order equat ion of (30) for small ~e will t ake  the 
same form on the left-hand side and 0 on the right-hand side. 
As ~-*(), zl~co for fixed Y, and thus F '  should approach 1 
asymptot ical ly  for this limit. If the third term of (30) were  to 
exist, say m=~2, either the first term or the second must 
survive for large r~, which due to the intrinsic nature  of the 
equation may not be possible. Thus we must choose m = 2 .  
Then (30) simply becomes 

F "  + FI; ..... ~e ( F ' F ' ~ -  F"F~) (31) 

1 =[f ,s(Z)]x= = f , s ( y )  uo = u ( ~ ,  Y) 

1 a 1 2 4 1 ~ 11 2 6 
- I + 2 A Y - ~ - A Y  --6-A Y +~0-AY +~-8~zl Y ~--- 

(24) 

I v ( x ,  Y)]y_,= 1 [ .  . , ]  _ - 1 . 1 4 2 7 4  
,/~TL : . -  z :  % _ ~  ...... ~ 

(25) 

The  boundary condition (5) and (7) are equivalent  to 

/;,(e, 0 ) = F " ( ~  e, 0 ) = 0  (32) 

while the condition u = u0 at xl = 0 requires that  

l imF ' (~  e, z~) - u0. (33) 

Now, by (24), the above condition can be wri t ten as 
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l imF '  (~, ze) l+4(2A~)+4'~(-13A~ ~) 

+ ~ ' ( -~A~  ') + ~( IoA~) + ~(-~gl A~,? 

+ . . . .  ~, ~ (a~,2 ~) (34) 
k ~ 0 

2 4 

+ n ( n  2) ( n - 4 )  ~-?+...}. 

The  asymptotic  expansion for large ~ is 

(42) 

Thus the appropr ia te  expansion for F ( ~ ,  7) must be 

F(~, 7) =Fo(~) +~F, (7) + g~F~(~) +--. (35) 

so that 

b;" + FoFo"-O 
F~"+boF/" Fo'F/+2~;"F~ 0 
F/" + FoF/' 2Fo'F/ + 3F,,"F~ FI"F(-- 2F~F~" 

(k~ 1)F~F; '  ~} 
% 

...... (36) 

--~ (2)1- ~2~ ( n + 2 k - 2 ) !  ~. ~, 
F',,~(~)coC,, /~?+-~, (~ 2),~!2 ~:~*~ (43) 

w h e r e  kL is i n t e g e r  of  2" G e n e r a l l y  for  l a r g e  ~ the  

asymptot ic  expansion for F~ (~) must have descending series 
s tar t ing from z~+~. Putt ing the multiplying constant r with 
double subscript, Fn(~) will be 

n + 2  

k = l  
(44) 

Then (40) can be wri t ten for large ~ as 

The  boundary conditions are 

b,, (0) - F~" (0) = 0, (37)  

lira b~" (rD = a ~ "  

First, the non-linear equat ion for F0 and the corresponding 
boundary conditions are satisfied only with 

b ~ -  ~ (38) 

All the other equat ions are l inear and with F0 known take the 
form as follows ; 

b;/"  + ~F," - nF, /  = G,, ( ~ ) , (39) 

where G~(~) is the known funct ion;  

G~ (~)~:o ~,  w ~  m (45) 
m = o  

where 

n 1 

w,~ = E { - ( k + l ) d m + k e  ~} 
k l  

din= 32 r ,+2,~,~ ~+~( l - - j+2)  ( l - j + l ) ,  
i * J  n ~ 2  m 

(i, j > l ,  i < k + 2 ,  j < l )  
e,,, = N ,~k,,, ,+28~,~ ~ + ~ ( k - i + 2 ) ( l - j + l ) ,  

i + j  r Z - 2  m 

(i, j 2 0 ,  i < k + l ,  j - < l + l )  

(46) 

and l = n = k. It turned out that B~.~ vanishes in obtaining the 
solutions up to F4(q).  In the following, we shall prove that 
this is true for all F~(Tj). First  we prove that  w~=w,, ~=0. 
With m =  n, (46) becomes 

G. (~ )=:~2~{kF~ ' F ' ~ -k - ( k+  I)FkF", ,  ~} (40) 
n 1 

w,,= ~ ( k + l )  ( n - k + l )  ( 2 k -  n)/~ . . . . .  ~ ~,,~ ~+~. 
k = l  

Thus, the complete solution F .  (~) will be sum of the comple- 
mentary  solution F.h (7) and the part icular  solution/~;~p(q). 
The  complementary  solution F.h (z]) satisfying the boundary 
conditions at ~ - 0  must start  from rj. It is found that 

Replacing k by n - k  results in 

n I 

wn = ~ ( n - k + l ) ( k + t ) ( n  2k)/~,,.k.n k+~f?k,~*~ 
n k = t 

F', ,h(Tj)=CnM( n 1 - ~  2 '  2 '  ~ ) (41) 

where M(a,  b, ~) is the confluent hypergeometr ic  func- 
t ion(Abramowitz  & Stegun, 1972), and 

M(a ,  b, g ) - l + ~ - s -  (b)~ 2 ! - ( b ) 3  3 . ' -  

in which 

and thus, for even ( n - 1 )  all therms are cancelled out by each 
n other, and for odd (n 1) one remaining term when k ~ also 

vanishes because ( n - 2 k ) - 0 .  Now it is clearly seen that 
when m =  n--  1 either 5~,k ,+2 or 8,~-~+2 becomes zero because 
~ , k - ~ . , = 0  which means that W~_l=0. And thus G,,(V) does 
not contain 7/' and ~ff '. Next  we assume that the part icular  
solution F',,p(Tj) for large 7~ starts from ~,,2, i. e., 

n 2 

F%p(71) co Z h~rj' (47) 
z = O  

, l ' ( a + n )  
aJ , , -  -V -~a )  

is the Pochhammer ' s  symbol. Thus for small 7, 

upon which and (45), (39) becomes 

n 4 • - 2  n 2 

(m+2)  ( m §  ~. ( m - n )  h~= ~2 u,m. 
m 0 m = O  m = = o  



BOUNDARY L A Y E R  FLOW OVER A FINITE F L A T  PLATE WITH A CONSTANT SLIP VELOCITY 13 

Therefore  

1 
h . - 2  = - 2 w ,  2 

1 

= ml_- n- { w ~ -  ( m + 2 )  ( r e + l )  h,~,2}, h= 

( m = z t - 4 ,  n - 5 , ' - ' ,  0). 

Consequently it is proved that the assumption (47) is correct  
and accordingly ,8,.,,.=0. Thus for large 8, 

17+1 

G (v) ~ E2 & , , . ~  " (48) 
m = : o  

h ,,, ~ + s s n , m  := m 
m 

/ ,1 
s~. = c,, - n + - i  {n._-2))~/(-n-2k+i-)-2,,,~;:~ . if n ) 

+ l - - m i s e v e n  
0 ; else 

where n - 2 k + l = m ,  and h~-~=0  if m = n + l  and m = n .  

On the other  hand we assume that  for small 

F' , ,o  = ~2 b~v ~ (49) 
k = 0  

G~ = ~ r , v  k (50) 
k 0 

Then by substituting (49) and (50) into (39), and collecting 
coefficients in like powers of ~, we get 

b 
1 + ( n - k )  

~ = (k-4:)) (k7g-f~ r~ "(k-+2i-(k§ 1) -~ (51) 

It is clear that  the second te rm on the right-hand side of (51) 
generates  nothing more than the complementary  solution if 
either bo:v0 or &:v0. Hence 

b o = & = 0  

is a compulsory condit ion to obtain a purely part icular  solu- 
tion ; i.e., F '~ ,  starts from ~2 for small rj. C~ is then obtained 
from the condition at infinity by 

l . ( n + l ~  

L - n =  . . . . . .  1 . . . . .  L Z a n  (52) 

Using an explici t  expression, we write u for large ~ as 
follows ; 

U= bo" + #F, '  + U G "  + $abV + $ ' [ q '  + . . .  
= a o +  $ ( 2 ,%2~)  + $2(2&,,v~+&.0 
+ $3 (4,sa,47?a + 2,83,2 r] § r/aa) + " '  
=: (ao+ 2,8,,2 Y+3,8=,~ Y2 § 4,8a,4 y a +  ...) 
+$( o ) 

+ 42 (,82a + 2,8a,2 Y + 3,8,,a Y a + 4,8s,, Y 3 + . . . )  
+ ~a (,83.~ + 2,8,.2 Y+3,Ss.a Y 2+4/A., y a +  ...) 

(53) 

Thus for fixed small $, the expansion (35) is not adequate  in 
describing the flow field for large Y. 

For  large Y, the asymptot ic  expansion (53) suggests us to 
expand u as 

u = f o ' ( Y )  + f A ' ( Y )  + S2G ' (Y)  + ' "  (54) 

so that 

u =A(Y) + $A (Y) +UA(Y) +..- (55) 

It is clear that  fo=f,~ ( Y ) ,  Substi tut ing these and their  deriva- 
tNes  into (4), we obtain the sequence of first order equat ions 
as follows 

f o ' A '  -- s  = 0 

2 ( / d r ;  - So"A) = A , ' + A " A - A ' A '  
3 ( / o % '  - - f , , ' G )  -- A " + 2 (A " A  - A ' A ' )  
4- ( f , -"A'  - A ' / , ' )  . . . . . .  

n 1 

~2(j'o'f.,'-- fo"fn) = f " , > 2 +  ~ (fk"f,~-k 
k = l  

- f ~ ' f ' , ,  ~) ...... 

(56) 

The  boundary condition is f rom matching with (5) for small 
Y, i.e,, 

l imf% ( Y )  --- fl.,~ (57) 

Solutions of the first 7 terms are obtained : 

f ~  : : 0  

1 

1 
f 4 : 8 { ( a 2 -  Y ) 2 f o " + ( Y + a 4 ) f ( - f o }  

1 
f~,= 6 a:,(a2 - Y)  fo" + asfo" 

./~= 418 (a~ - Y ) ~ f ( ' + { 1 6 ( a 2 - - Y ) ( 2 Y + a , - a a )  

+ 1~ aa2}fo" + ( - -116 Y+a~) f (+-16- fo  

a -  1 1 

-9s aaa~ 21i--aaa~- m r (  

(58) 

where 

a a  : 2 ilL'!- 

(/1 

a t  

a, = 8b'~ +2a2 
at 

a r 4 1 
- - -  = , .... ~ 3  

a, 6 
1 1 ~ 1 

a0 = c ~  (,8o.~ - 8 -a2  a:,) - - l g  (3  a2 - a4)  

1 ~ 1 a 2, 1 1 

The center-line velocity defined as u c = u ( x , o )  is then 
obtained from (42) and (52) ; 
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Table 1 Asymptotic nature of u and V obtained by the analytic 
method for the boundary layer equations for small xl 

XI 

x~ ::0 
u V 

f~(Y) -f ,~(Y) + Yf; (Y)  
2,/2 - (2F,-TFd) ~/2x~ (3Fz 

1~- ~(1)A./2-.i:-:~'(~) ,,F/)+'-" forsmallv 
k / 

4-... for small 
f / (Y)+x~(22  ~- Y)G" - [ f ~ ( Y ) - ( Y - 2 / t ) f /  

(Y)+--. for large Y (Y)]+.. .  for large Y 

r(k+l) \ --~--y .... 
(59) 

Table 1 shows the asymptotic nature of u and V for small xl. 

4. SOLUTION FOR THE REGION 
FAR D O W N S T R E A M  ; JET 

FLOW THEORY 

The only driving condition which generates the fluid 
motion is the inhomogeneous boundary condition at y - 0, i.e., 
(6). The induced motion of the fluid is then free of that 
condition after the trailing edge of the plate, and thus the 
flow mechanism far downstream will approach to that of the 
jet flow. Schlichting obtained an exact solution for the two- 
dimensional laminar jet flow based on the boundary layer 
equation (Schlichting, 1955): 

N =2ax~ '3 tanh( 3@~Ka ) (60) 

23a2x;�89 h2[ a Y  \ l  (61) 

where 
/ 9 \l,a a=/Uo) 

Jo= fo~uadY 

Fig. 3 

X 

(i- 1/2, j- 1/2) 

i-I 

j + l  

J 

j-1 

The mesh system used in the difference formula of the 
boundary layer equations 

the boundary layer equation with the aid of a computer. The 
equation to be solved is (14) and the boundary conditions are 
(15) to (18). The mesh system is as shown in Fig. 3. The 
method is based on the so called Keller's box method (Cebeci 
and Smith, 1974), but the centred)difference for the x-deriva- 
tives was not successful due t%the discontinuity in the bound- 
ary condition at Y=0 and xl=0. thus we shall use the 
backward difference for that. Another feature special to the 
present problem is that the boundary condition at infinity 
(finite but large in the computational domain) is 
homegeneous, so that the algorithm of Thomas cannot be 
directly applied. We write 

f ( x ,  z ) = z - g ( x ,  z)  (65) 

Then, the boundary conditions for g(x,  z) become 

g(x, 0) 0 (66) 

g'(x,  0)=0 for 0<x<- 1 (67) 

1 
g"(x,  0 ) - 0  for f < x  (68) 

g'(x,  z ) ~ l  a s z ~ o o  (69) 

Integrating (2) with respect to y from 0 to infinity and 
applying the conditions (5). (7), and (8), we obtain 

so that the condition at infinity is now inhomogeneous. 
Substituting (65) into (14) and introducing h ( z )  yield 

3!vfoo•U2dY =0 (62) 

which states that Jo is independent of x, and so xl. At xl =0, 

g ' =  h (70) 

h" - gh' + zh' = 2x ( h .  + g.h" - hxh) (71) 

Jo= fo~u2dY= f o ~ ( f s  fi" (O)=0.627615 (63) 

where the third equality comes from (19). Then 

a = 0.89046 (64) 

5. N U M E R I C A L  SOLUTION OF THE 
B O U N D A R Y  LAYER EQUATION 

The non-linear terms in (71) are linearized by putting for a 
function ~b (g or h) 

where ~ stands for the old value of ~b, and by neglecting terms 
in multiples of (~b-~) which are assumed to be small. Deriva- 
tives in x are resolved by using the backward difference. It 
results in 

Finite difference technique is used to obtain the solution of h" § Ph" + qh + rg = s (72) 
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where 

q=2x  {kx~ J x - t h - 1 ) }  

r = -  (1+ 2 ; ) ~ t  ' 

~: ~ (a ~- ~a'-h, _,)-}a' 

0, for 0<x-<  1 

+ + Z/z h i =  / Ra (Sa -)- Ta) R2-4R',  

' 4Se  {Sa (Sa+~-TI ) -+_~zT-Ta ;_  3 for l < x  

(79) 

he = 1, (80) 

Using the centered difference for the z-der ivat ives ,  (67) 
becomes 

A j h j  1 -}- Bfl~j + C j h j ~  1 + D igj = Eo. (73) 

where 

A j = I  - CA~Z 

B~ = - 2 + qzlz 2 

-- 1 + C J z  Cj 

D~ = r 
Ej  - s 

Now we apply centered difference to (70) at the mesh point 
1 1 marked "X"  ( i - - ~ ,  j - ~ - )  in Fig. 3; 

2 z  gj=g~ ~+~,~(h~+h~ 1) (74) 

Using Thomas  algorithm, equation (73) can be expressed as 

where J denotes the end of j. The condit ion (80) correspond- 
ing to (68) is obtained by representing the function h (z) near  
z = 0  with a polinomial composed of hi, ha, and ha. 

The computat ional  procedure is as follows: 
(1) Assume the initial value of g, g~, [z, and kl~. At x = 0  )'z 
is chosen by 

z for 0 < z < - t  
h =  1 for l<--z-<-z~ 

where Ze is the upper edge of the domain. At all the other 
stat ions of x, the extrapolat ion from the two previous steps is 
used to est imate the initial values. 
(2) K ,  Bj, ..., Ej are calculated. 
(3) Star t ing from j = J - 1 ,  tr S~, and 7"3. are obtained by 
(77) u p t o j ' = l  w i t h R j = l  and S j = T j = 0 .  
(4) Then gj and h~ are obtained from j = 2  to j = J  using (74) 
and (75) with g~ and hx given by (78) ',and (79) or (80) depending 
on  X. 
(5) The procedures (2) to (4) are repeated until I r  
becomes small  enough. 
(6) x is increased and the procedure (1) to (5) is repeated. 

h j - - R j + S . J h l  1+ 7"jgj i (75) 

Substi tut ing (75) into (73) to el iminate hj+~ and using (74) to 
eliminate gj yields 

hj E~-C~Rj< AJ+ J2 z (C~7"j<+D~) 
V~ Vj h~-~ 

�89 (76) 

where 

V j = B j +  C j S j + I  +~Z(CjTj+I-t:- D~). 

By comparing (76) with (75), we obtain 

R~= E~- C~&+~ 
E 

A~+ @L(C~Tj+I+D~) 
2 

S j  = . . . . . . . . . . . . . . . . . . . . .  Vj 

Tjl__ C~T~< + D~ 
v~ 

The boundary  condit ions given by (66) to (69) are 

& = 0, 

(77) 

(78) 

6. R E S U L T S  A N D  D I S C U S S I O N S  

Table  2 and Fig. 4 show the center-line velocity uc obtained 
by the numerical  t rea tment  of the boundary  layer equations 
in comparison with that obtained by the analyt ic  method, i.e. 
(59), and that obtained by the jet flow theory (61). In Table  2, 
analytic results are for the first 17 terms of equation (32). x 
used in the numerics #1 of Table  2 is 0.001 for 0.:50 <~ x < 0.504, 
0.002 for 0.504_<x<0.520, 0.005 for 0.520<_x<0.550, 0.010 for 
0.550-<x<0.600, and 0.020 for 0.600~<x, while that in the 
numerics #2 is 0.01 for 0.50_<x< 0.54, 0.02 for 0.54_<x <0.60, 0. 
04 for 0.60 <_ x < 0.68, 0.08 for 0.68 <_ x < 0.92, 0.16 for 0.92 ~< x < 

ur 

~.0 

O8 

06 Q X% 

02 I 
0 

Fig. 4 

I I I I I I I I I 
2 3 ~ 5 6 7 8 g 7O 

x 

Center-line velocity uc ; - - ' - - ,  Numerics ; - - ,  Analytic 
result (up to 17 terms of Eq. (Y2)) : ..... , Jet flow theory 
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Table 2 Centerline velocity u, obtained by the analytic method, 
the numerics and the jet flow theory 

Analytic Numerics Numerics Jet flow 
x method #1 #2 theory 

0.51 
0.52 
0.54 
0.56 
0.59 
0.60 
0.62 
0.64 
0.66 
0.68 
0.70 
0.72 
0.74 
0.76 
0.78 
0.80 
0.84 
0.92 

1.08 
1.24 
1.56 
1.88 
2.52 
3.00 
3.80 
5.08 
6.36 
7.64 
8.00 
8.92 

0.901078 
0.861692 
0.832424 
0.808474 
0.787959 
0.769904 
0.753728 
0.739063 
0.725764 
0.713436 
0.702335 
0.692489 
0.684197 
0.678008 
0.674815 

0.930155 
0.900991 
0.861315 
0.831733 
0.807570 
0.786781 
0.768919 
0.752827 
0.738184 
0.724749 
0.712342 
0.700819 
0.690065 
0.679989 
0.670513 
0.661572 
O.645O91 
0.616633 

0.572192 
0.538420 
0.489234 
0.454216 
0.406085 
0.380659 
0.349331 
0.315031 
0.291163 
0.273197 
0.268883 
0.258976 

0.936560 
0.905756 
I).864122 
0.834764 
0.810408 
0.789470 

0.755975 

0.728093 

0.685708 

0.651869 
0.623916 

0.582396 
0.549910 
0.505056 
0,471652 
0.428232 

0.379119 
0.346395 
0.322495 
0.303988 

0.828285 

0.757379 
0.705867 
0.633865 
0.584425 
0.518447 
0.474803 
0.418173 
0.389487 
0.355060 
0.318311 
0.293207 
0.274520 
0.270055 
0.259838 0.289067 

Table 3 Distributions of ze obtained by the numerics in compari- 
son with those by the jet flow theory for two stations of 
x = 3.0, and 8.0. 

at x=:3.0 at =8.0 
z Numerics Jet flow Numerics Jet flow 

#1 theory ~1 theory 
0.00 
0.21 
0.42 
0.60 
0.90 
1.20 
1.50 
2.10 
3.00 
4.20 
5.40 
7.20 

0.380659 
0.378310 
0.371377 
0.362034 
0.340422 
0.312954 
0.281791 
0.216474 
0.131492 
0.060105 
0.025648 
0.006726 

I).389487 
0.386823 
0.378976 
0.368434 
0.344194 
0.313690 
0.279511 
0.209453 
0.121979 
0.052680 
0.021334 
0.005262 

0.268882 
0.267782 
0.264516 
0.260072 
0.249591 
0.235840 
0.219599 
0.182941 
0.128055 
0.071368 
0.036849 
0.012559 

0.270055 
0.268915 
0.265532 
0.260931 
0.250094 
0.235906 
0.219190 
0.181648 
0.125980 
0.069347 
0.035486 
0.012181 

1.24, 0.32 for 1.24<_x < 1.88, 0.64 for 1.88<_x< 2.52, and 1.28 for 
2.52 ~< x. It is noted that  the analytic  result  is very close to the 
numerical  solution for x smal ler  than 0.80 at which the 

difference is about  2%. On the other  hand, the jet f low theory 
yields be t te r  results  as x is increased. At x 3, u~ obtained by 
the jet flow theory differs  from that  of the numerics  by 2%, 
while that  at x =8  by 0.4% as is also seen in Table  3. 

Figure 5 shows distr ibut ions of the s t reamwise  velocit ies 
obtained by numerics.  Notewor thy  is that  the velocity profile 
changes  abruptly near  x = 0.5, and for small Y. Shown in Fig. 
6 (a) and (b) are stream-lines,  it is observed that  the fluid 
part icles  are entra ined for x < 0.5, and detra ined for x >0.5 
for modera te  and small Y. The value of Y at x =0.5 at which 
the normal  velocity component  V changes  its direct ion is 

3 

d2 

Ot 

I 
n 7 2 ;~ & 5 6 7 

1 i i 
8 9 ~; 

Fig. 5 Distributions of u obtained by the numerics for four 
stations of x = 0.5, 0.6, 1.0, and 3.0 
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Fig. 6 Streamline patterns 

found to be 1.(t40 as is calculated by the asymptot ic  equat ion 
shown in Table  1. 

The analytic solution obtained in sect ion 4 is studied con- 
cerning its convergence.  As is shown in Fig. 7 and Fig. 8, the 
series (59) seems to diverge for all xl, but it gives more  
accurate  result  for smaller  Xl. It implies that  an opt imum 
number  of t e rms  which gives the most  accurate  result  depend- 
ing on x, exis ts  ; for uc, average of which is found to be 0. 
64385 being 0.2% off f rom that  of the numerics  0.64509 (Fig 8 
(a)), while at  xl =0.50, k 2 - 1 1  gives the average  uc of 0.5910 
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Nature o:f the asymptotic ~ r i e s  (32). The first K terms 
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being 0.3% off f rom tha t  of the numer ics  0.59272 (Fig. 8(b)). 
F igure  9 compare s  d is t r ibut ions  of u ob ta ined  by the 

numer ics  wi th  those  by the  jet  flow theory  at  th ree  s ta t ions  of 
x. It is c lear ly  seen tha t  the  two resul ts  agree  be t t e r  as x is 
increased. 

Figure  10 shows  the  d is t r ibut ion  of V for smal l  x~. As  is 
found by the ana ly t ic  solut ion (Tab le  1), V shifts  abrup t ly  at  
x = 0.5 in the region wi th in  the bounda ry  layer  which  is also 
conf i rmed by the  numer ics  as shown in Fig. 10. Th i s  abrup t  
shif t  in V oceurrs  only at  mode ra t e  Y. Because of this  
d iscont inui ty  in V, we may  need to cons t ruc t  a smal le r  region 

~b 
o 

0 5  ~ - -  Numemcs 
N~ oo Jef F l o w  Theory 

05 , 

O z ,  - 

0 3  

x, 01 

0 

Fig. 9 

5 10 15 20 

Distributions of u obtained by the numerics in compari- 
son with those by the jet flow theory for three stations of 
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Fig. 10 Distributions of V obtained by the numerics and the 
analytic method for the region very close to the trailing 
edge 
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Fig. I I  Asymptotic nature of the numerical result for {zr of the 
present problem for large x 

near  the  t ra i l ing  edge wi th in  which the new scheme l ike the  
t r iple  deck (Smith, t982) can  be devised to resolve the  singu- 
larity.  It m a y  be s imi lar  to the two deck scheme used by 
Smi th  & Duck (1977) and by Merk in  & Smi th  (1982) whose  
problems  are  concerned  wi th  the na tu ra l  convec t ion  so t h a t  
the s t r eamwise  veloci ty  componen t  van ishes  far  f rom the  
wa l l ;  the present  problem is hence s imi la r  to them in this  

25  

Y 
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sense but differs in that the present one contains the finite 
amount of velocity at the wall. 

Figure 11 shows qJ'~ defined as gr = grr~ ~ versus x in 
log-log scales, g r  for the numerical result is evaluated at the 
upper edge of the computational domain. It is seen that the 

1 
power 3-  of equation (60) is attained for large x. 
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